Abstract

Crayfish are decapod crustaceans that use different forms of escape to flee from different types of predatory attacks. Lateral and Medial Giant escapes are released by giant interneurons of the same name in response to sudden, sharp attacks from the rear and front of the animal, respectively. A Lateral Giant (LG) escape uses a fast rostral abdominal flexion to pitch the animal up and forward at very short latency. It is succeeded by guided swimming movements powered by a series of rapid abdominal flexions and extensions. A Medial Giant (MG) escape uses a fast, full abdominal flexion to thrust the animal directly backward, and is also followed by swimming that moves the animal rapidly away from the attacker. More slowly developing attacks evoke Non-Giant (NG) escapes, which have a longer latency, are varied in the form of abdominal flexion, and are directed initially away from the attacker. They, too, are followed by swimming away from the attacker. The neural circuitry for LG escape has been extensively studied and has provided insights into the neural control of behavior, synaptic integration, coincidence detection, electrical synapses, behavioral and synaptic plasticity, neuroeconomical decision-making, and the modulatory effects of monoamines and of changes in the animal’s social status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.