Abstract

Long-chain alkyl aromatics are important precursors for FCC gasoline. It is well known that for short-chain alkyl aromatics like cumene the dominant cracking process is simple alkyl aryl cleavage. In contrast we have found that for long-chain alkyl aromatics like 1-phenylheptane, cracking over in situ USY catalysts is much more complex. Cracking in a long alkyl side chain results in a carbenium ion that isomerizes easily and gives self-alkylation of the aromatic ring. Self-alkylation produces coke precursors and heavy gasoline aromatics. Product selectivities vary with zeolite unit cell size in ways that are rationalized on the basis of decreasing acid site density and zeolite adsorption properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.