Abstract

The present paper deals with cracking in ferritic pipework of light water reactor (BWR) feedwater systems whose causes are unsuitable design and manufacture and, at least occasionally, unsuitable water quality. Thus in two BWR plants in the German Federal Republic large circumferential cracks have been found in the circumferential welds in the main feedwater pipelines immediately adjacent to the reactor pressure vessel, and in a further BWR large longitudinal cracks have been found in pipe bends of the reactor water purification pipework connected to the main feedwater pipelines. The piping regions near the reactor pressure vessel feedwater nozzles represent a boundary region of varying thermodynamic states of the pressurised water. The reactor pressure vessel is heated to saturation temperature by the radioactive decay heat, and then cooler water, and sometimes (during start-up) cold water is injected into the reactor pressure vessel in order to maintain a constant water level about 2 m above the upper edge of the feedwater nozzles. In order to improve the state of knowledge regarding the stressing conditions under prevailing operating conditions, extensive strain and temperature measurements have been carried out. The results of these measurements carried out in several BWRs confirm the occurrence of rapid temperature changes in the feedwater pipework in the regions where it connects to the reactor pressure vessel, leading to varying stresses which at times reach the plastic region. These processes are triggered by special operating states such as start-up and shut-down or hot standby operation with feedwater flows smaller than 6% relative to normal operation under full load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.