Abstract

Several simple formulas have been developed to predict the variations of stress intensity factors for mode I crack induced by the stiffness and geometry of the near crack-tip inclusion. The derivation of the fundamental formula is based on the transformation toughening theory. The unconstrained mismatch strains between matrix and inclusion, which induce the variation of the near crack-tip field, are estimated based on the Eshelby equivalent inclusion approach. As validated by numerical examples, the developed formulas have satisfactory accuracy for a wide range of the modulus ratio between inclusion and matrix as long as the inclusion is located in the K 0-controlled field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.