Abstract

This paper investigates laser dicing of glass (commercial Borofloat®33) for backend packaging in the microelectronics industry. An ultraviolet (355 nm) diode-pumped solid-state nanosecond laser was used in this investigation. Laser processing of glass is challenging as glass is transparent for most available wavelengths. Nonlinear absorption can be obtained but produces undesirable effects (chipping, cracks) in the nanosecond regime. In the present study, an absorptive polymer layer was spin coated on top of the substrate and acts as a heat incubator during laser irradiation. This paper shows that preheating the substrate produces clean scribe. Laser dicing is qualitatively and quantitatively more efficient than blade sawing. 1 × 1 mm2 dice have been separated by laser scribe/break method that allows a throughput increase of 18%versus blade sawing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.