Abstract

Crack progression during compressive sustained-peak low-cycle fatigue (SPLCF) was examined in vapor phase aluminide coated single-crystal Ni-base superalloy Rene N5. Strain-controlled tests with a 120-second hold at compression were conducted at 1366 K (1093 °C) with A = –1 (R = –∞) and 0.35 pct total strain range, and were terminated at selected fractions of predicted life. Crack lengths on the surface and crack depth in longitudinal sections were examined for each specimen. All cracks appeared to have initiated at the coating surface. Failed specimens showed that cracks initially grew on (001), perpendicular to the stress axis, and then deflected to other crystallographic planes. Interrupted test specimens showed crevices initiated on the coating surface at less than 10 pct of the predicted life. The depths of crevices into the coating increased with cyclic exposure, but they did not penetrate into the substrate through the interdiffusion zone (IDZ) until about 80 pct of predicted life. Stress relaxation during compressive hold results in residual tension upon unloading. These results suggest that improving creep resistance of the substrate alloy and developing a coating system that can delay crack penetration into the substrate are keys for improved SPLCF life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.