Abstract

A non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in the piezoelectric materials plane under anti-plane shear waves for the permeable crack surface boundary conditions. Unlike the classical elasticity solution, a lattice parameter enters into the problem that make the stresses and the electric displacements finite at the crack tip. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and electric displacement near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations in which the unknown variable is the jump of the displacement across the crack surface. The solutions are obtained by means of the Schmidt method. Crack bifurcation is predicted using the strain energy density criterion. Minimum values of the strain energy density functions are assumed to coincide with the possible locations of fracture initiation. Bifurcation angles of ±5° and ±175° are found. The result of possible crack bifurcation was not expected before hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.