Abstract

The development of highly active, stable, and inexpensive catalysts for efficient and complete dehydrogenation of hydrazine is highly attractive but still very challenging. Herein, Cr2O3-modified NiFe (NiFe-Cr2O3) nanopartciles (NPs) have been designed as the heterogeneous catalyst. Both the catalytic activity and hydrogen selectivity of Ni0.9Fe0.1-Cr2O3 NPs were improved remarkably as compared with those of their mono-metallic counterparts. The prepared Ni0.9Fe0.1-Cr2O3 catalyst exhibited an outstanding catalytic activity to release 3.0 equiv. (H2 + N2) from hydrazine in only 8.5 min at 70 °C, providing a turnover frequency (TOF) value of 893.5 h−1 based on surface metal atoms. Systematic studies indicated that the small size and high surface area of Ni0.9Fe0.1-Cr2O3 as well as the strong synergistic electronic effect between Cr2O3 and NiFe NPs resulted in the excellent activity of Ni0.9Fe0.1-Cr2O3 catalyst. Such a highly rapid, long term durability, and low cost catalyst may encourage greatly the practical application of hydrous hydrazine as a chemical hydrogen storage material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.