Abstract

In this study, magnetic snail shell (MSS) prepared by impregnating of iron oxide onto snail shell (SS) powder was used for removing Cr(VI) from aqueous solution. Among six different mass ratios of Fe/SS powder studied, the MSS25 produced at a ratio of 25% achieved the highest Cr(VI) adsorption capacity. Batch adsorption experiments were conducted to investigate the adsorption isotherm, kinetics, and mechanism of Cr(VI) onto MSS25. The results illustrated that adsorption of Cr(VI) onto MSS25 reached equilibrium after 150 min at pH 3. The adsorption kinetics could be well described by the pseudo-second order model (R2 = 0.986). The Langmuir model (R2 = 0.971) was the best-fitting model that described the adsorption isotherm of Cr(VI) onto MSS25. The maximum adsorption capacity was 46.08 mg Cr(VI) per gram of MSS25. Ion exchange, electrostatic attraction, and adsorption-coupled reduction were determined as the main adsorption mechanisms of Cr(VI) onto MSS25. The high percentages of CaCO3 and Fe3O4 found in the MSS25 structure made a significant contribution to the Cr(VI) adsorption process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.