Abstract

In this work, we investigate six helicity amplitudes of the four-body B(s)→(ππ)(KK¯)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_{(s)} \\rightarrow (\\pi \\pi )(K\\bar{K})$$\\end{document} decays via an angular analysis in the perturbative QCD (PQCD) approach. The ππ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi \\pi $$\\end{document} invariant mass spectrum is dominated by the vector resonance ρ(770)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho (770)$$\\end{document} together with scalar resonance f0(980)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_0(980)$$\\end{document}, while the vector resonance ϕ(1020)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\phi (1020)$$\\end{document} and scalar resonance f0(980)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_0(980)$$\\end{document} are expected to contribute in the KK¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K\\bar{K}$$\\end{document} invariant mass range. We extract the two-body branching ratios B(B(s)→ρϕ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal{B}(B_{(s)}\\rightarrow \\rho \\phi )$$\\end{document} from the corresponding four-body decays B(s)→ρϕ→(ππ)(KK¯)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_{(s)}\\rightarrow \\rho \\phi \\rightarrow (\\pi \\pi )(K \\bar{K})$$\\end{document} based on the narrow width approximation. The predicted B(Bs0→ρϕ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal{B}(B^0_{s}\\rightarrow \\rho \\phi )$$\\end{document} agrees well with the current experimental data within errors. The longitudinal polarization fractions of the B(s)→ρϕ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_{(s)}\\rightarrow \\rho \\phi $$\\end{document} decays are found to be as large as 90%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$90\\%$$\\end{document}, basically consistent with the previous two-body predictions within uncertainties. In addition to the direct CP asymmetries, the triple-product asymmetries (TPAs) originating from the interference among various helicity amplitudes are also presented for the first time. Since the Bs0→ρ0ϕ→(π+π-)(K+K-)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_s^0\\rightarrow \\rho ^0\\phi \\rightarrow (\\pi ^+\\pi ^-)(K^+K^-)$$\\end{document} decay is induced by both tree and penguin operators, the values of the AdirCP\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal{A}^\ extrm{CP}_\ extrm{dir}$$\\end{document} and AT-true1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal{A}^{1}_{\ ext {T-true}}$$\\end{document} are calculated to be (21.8-3.3+2.7)%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(21.8^{+2.7}_{-3.3})\\%$$\\end{document} and (-10.23-1.56+1.73)%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(-10.23^{+1.73}_{-1.56})\\%$$\\end{document} respectively. While for pure penguin decays B0→ρ0ϕ→(π+π-)(K+K-)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B^0\\rightarrow \\rho ^0\\phi \\rightarrow (\\pi ^+\\pi ^-)(K^+K^-)$$\\end{document} and B+→ρ+ϕ→(π+π0)(K+K-)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B^+\\rightarrow \\rho ^+\\phi \\rightarrow (\\pi ^+\\pi ^0)(K^+K^-)$$\\end{document}, both the direct CP asymmetries and “true” TPAs are naturally expected to be zero in the standard model (SM) due to the absence of the weak phase difference. The “fake” TPAs requiring no weak phase difference are usually none zero for all considered decay channels. The sizable “fake” AT-fake1=(-20.92-2.80+6.26)%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal{A}^{1}_{\ ext {T-fake}}=(-20.92^{+6.26}_{-2.80})\\%$$\\end{document} of the B0→ρ0ϕ→(π+π-)(K+K-)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B^0\\rightarrow \\rho ^0\\phi \\rightarrow (\\pi ^+\\pi ^-)(K^+K^-)$$\\end{document} decay is predicted in the PQCD approach, which provides valuable information on the final-state interactions. The above predictions can be tested by the future LHCb and Belle-II experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.