Abstract

A series of crystalline oligomers from α-D-cellobiose octaacetate through α-D-cellohexaose eicosaacetate were prepared by homogeneous acetylation of the corresponding cellooligosaccharides and characterized by cross-polarization and magic angle sample spinning (CPMAS) carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy and X-ray analysis to obtain the structural models of cellulose triacetate (CTA) in the solid state. Progressing toward the hexamer, the NMR spectral features of the oligomers, in comparison with two allomorphs of CTA I and CTA II, gradually approached those of CTA I. Specifically, chemical shifts of both the hexamer and pentamer were in agreement with those of CTA I. In addition, X-ray diffraction patterns of the oligomers established that the crystalline pentamer and hexamer had a CTA I lattice despite recrystallization from ethylacetate-n-hexane. Therefore, we conclude that the pentamer and hexamer are useful models for the CTA I structure. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4100–4107, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.