Abstract
The conversational recommender system (CRS) aims to provide high-quality recommendations through interactive dialogues. However, previous CRS models have no effective mechanisms for task planning and topic elaboration, and thus they hardly maintain coherence in multi-task recommendation dialogues. Inspired by recent advances in prompt-based learning, we propose a novel contextual prompting framework for dialogue management, which optimizes prompts based on context, topics, and user profiles. Specifically, we develop a topic controller to sequentially plan the subtasks, and a prompt search module to construct context-aware prompts. We further adopt external knowledge to enrich user profiles and make knowledge-aware recommendations. Incorporating these techniques, we propose a conversational recommender system with contextual prompting, namely CP-Rec. Experimental results demonstrate that it achieves state-of-the-art recommendation accuracy and generates more coherent and informative conversations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.