Abstract
Localisation is an important technique in ring theory and yields the construction of various rings of quotients. Colocalisation in comodule categories has been investigated by some authors (see Jara et al., Commun. Algebra, 34(8):2843–2856, 2006 and Nastasescu and Torrecillas, J. Algebra, 185:203–220, 1994). Here we look at possible coalgebra covers π : D → C that could play the role of a coalgebra colocalisation. Codense covers will dualise dense (or rational) extensions; a maximal codense cover construction for coalgebras with projective covers is proposed. We also look at a dual non-singularity concept for modules which turns out to be the comodule-theoretic property that turns the dual algebra of a coalgebra into a non-singular ring. As a corollary we deduce that hereditary coalgebras and hence path coalgebras are non-singular in the above sense. We also look at coprime coalgebras and Hopf algebras which are non-singular as coalgebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.