Abstract

In this paper, we present a verification methodology that integrates formal verification techniques with verification by simulation, thereby providing means for generating simulation test suites that ensure coverage. We derive the test suites by means of BDD-based symbolic techniques for describing and traversing the implementation state space. In our approach, we provide a high-level of control over the generated test suites; a powerful abstraction mechanism directs the generation procedure to specific areas, that are the focus for verification, thereby withstanding the state explosion problem. The abstraction is achieved by partitioning the implementation state variables into categories of interest. We also depart from the traditional graph-algorithmic model for conformance testing; instead, using temporal logic assertions, we can generate a test suite where the set of state sequences (paths) satisfies some temporal properties as well as guaranteeing transition coverage. Our methodology has been successfully applied to the generation of test suites for IBM PowerPC and AS/400 systems.KeywordsTest SuiteCoverage ModelFinite State MachineFormal VerificationExecution PathThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.