Abstract

We present a Bayesian design for a multi-centre, randomized clinical trial of two chemotherapy regimens for advanced or metastatic unresectable soft tissue sarcoma. After randomization, each patient receives up to four stages of chemotherapy, with the patient's disease evaluated after each stage and categorized on a trinary scale of severity. Therapy is continued to the next stage if the patient's disease is stable, and is discontinued if either tumour response or treatment failure is observed. We assume a probability model that accounts for baseline covariates and the multi-stage treatment and disease evaluation structure. The design uses covariate-adjusted adaptive randomization based on a score that combines the patient's probabilities of overall treatment success or failure. The adaptive randomization procedure generalizes the method proposed by Thompson (1933) for two binomial distributions with beta priors. A simulation study of the design in the context of the sarcoma trial is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.