Abstract

A low-energy perturbation theory is developed from the nonperturbative framework of covariant loop quantum gravity (LQG) by employing the background-field method. The resulting perturbation theory is a two-parameter expansion in the semiclassical and low-energy regime. The two expansion parameters are the large spin and small curvature. The leading-order effective action coincides with the Regge action, which well approximates the Einstein-Hilbert action in the regime. The subleading corrections organized by the two expansion parameters give the modifications of the Regge action in the quantum and high-energy regime from LQG. The perturbation theory developed here shows for the first time that covariant LQG produces the high-curvature corrections to Einstein-Regge gravity. This result means that LQG is not a naive quantization of Einstein gravity; rather, it provides the UV modification. The result of the paper may be viewed as the first step toward understanding the UV completeness of LQG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.