Abstract

We derive a set of equations monitoring the evolution of covariant and gauge-invariant linear scalar perturbations of Friedman-Lema\^itre-Robertson-Walker models with multiple interacting non-linear scalar fields. We use a dynamical systems' approach in order to perform a stability analysis for some classes of scalar field potentials. In particular, using a recent approximation for the inflationary dynamics of the background solution, we derive conditions under which homogenization occurs for chaotic (quadratic and quartic potentials) and new inflation. We also prove a cosmic no-hair result for power-law inflation and its generalisation for two scalar fields with independent exponential potentials (assisted power-law inflation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.