Abstract

Sequential Monte Carlo (SMC) is a reliable method to generate samples from the posterior parameter distribution in a Bayesian updating context. The method samples a series of distributions sequentially, which start from the prior distribution and gradually approach the posterior distribution. Sampling from the distribution sequence is performed through application of a resample-move scheme, whereby the move step is performed using a Markov Chain Monte Carlo (MCMC) algorithm. The preconditioned Crank–Nicolson (pCN) is a popular choice for the MCMC step in high dimensional Bayesian updating problems, since its performance is invariant to the dimension of the prior distribution. This paper proposes two other SMC variants that use covariance information to inform the MCMC distribution proposals and compares their performance to the one of pCN-based SMC. Particularly, a variation of the pCN algorithm that employs covariance information, and the principle component Metropolis Hastings algorithm are considered. These algorithms are combined with an intermittent and recursive updating scheme of the target distribution covariance matrix based on the current MCMC progress. We test the performance of the algorithms in three numerical examples; a two dimensional algebraic example, the estimation of the flexibility of a cantilever beam and the estimation of the hydraulic conductivity field of an aquifer. The results show that covariance-based MCMC algorithms are capable of producing smaller errors in parameter mean and variance and better estimates of the model evidence compared to the pCN approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.