Abstract

In recent years, increasing attention has been paid to photoelectrochemical (PEC) hydrogen production owing to the utilization of sustainable solar energy and its promising performance. Silicon-based composites are generally considered ideal materials for PEC hydrogen production. However, slow reaction kinetics and poor stability are still key factors hindering the development of silicon-based photoelectrocatalysts. Herein, we present an n+-p Si pyramidal photocathode assembly method to load reduced graphene oxide (rGO) onto the surface of the n+-p Si pyramid by covalently linking (Si/rGO). rGO is utilized as a conductive layer to reduce the interfacial charge-transfer resistance. Then, MoS2 can be successfully electrodeposited on the surface of Si/rGO to form the Si/rGO/MoS2 composite, which possesses excellent PEC hydrogen evolution performance with a high and stable photocurrent of -41.6 mA cm-2 and a hydrogen evolution rate of about 18.1 μmol min-1 cm-2 under 0 V (vs RHE). The covalently linking rGO layer effectively enhances the transfer of photogenerated carriers between the Si substrate and MoS2. MoS2 provides abundant hydrogen evolution active sites, which accelerate the surface reaction kinetics, as well as a protective layer for the Si pyramidal array structure. This work provides a low-cost, convenient, and efficient way of preparing silicon-based photocathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.