Abstract

AbstractMussels’ anchoring threads, named byssus, are collagen‐rich fibers with outstanding mechanical properties. Our previous work has shown the possibility of producing a byssus protein hydrolyzate with good film‐forming ability, providing a promising new avenue for the preparation of biomaterials. Materials prepared from regenerated fibrous proteins often need additional treatments to reach the performance required for targeted applications. Here, we studied the effect of covalent crosslinking, using a carbodiimide or glutaraldehyde, on the mechanical properties and enzymatic resistance of byssus‐based materials. The results show that the mechanical properties of the films can be tuned, and that a higher crosslinking degree leads to increases in modulus and strength accompanied by a loss of extensibility. Structural analysis performed by infrared spectroscopy revealed that crosslinking induces an unexpected transition from aggregated strands to hydrated collagen/PPII‐related helical structures. The materials were nevertheless more resistant to collagenase degradation as a result of higher crosslinking density. This new set of materials prepared in aqueous environment could find a niche in tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.