Abstract
Functionalization of self-assembled DNA nanostructures is of fundamental importance for the realization of their application in nanotechnology and biosensing. Approaches reported so far suffer from lack of general applicability and usually require careful system design to avoid poor yields in the assembly of target structures. A novel approach well suited for fabrication of addressable DNA superstructures is reported here to generate DNA tile motifs. The method is based on the covalent linkage of a single-stranded protruding arm (covPA) to one of the oligomers forming the tile. Subsequent to assembly of tile motifs and superlattices, the covPA can be addressed by hybridization with complementary oligonucleotides or DNA-protein conjugates. The covPA can be located at arbitrary positions in a given tile motif without changing the general design and without compromising the structural integrity of the tile. The covPA strategy can also be readily extended to different PA sequences and multiple covPA arms can be linked to a tile. Superlattices obtained by self-assembly of covPA tiles reveal partial folding into double layers which possess an intrinsic order at the ultrastructural level. This phenomenon is likely associated with the increased flexibility of the covPA and might open up novel ways for DNA-based functionalization of solid surfaces and other applications of structural DNA nanotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.