Abstract

Covalent organic frameworks (COFs) are a new class of crystalline porous materials obtained from covalently attached organic building units. By virtue of the unique characteristics such as periodic and well-defined structures, low-density, high surface area, excellent stability as well as desired semiconductor-like behavior, COFs have gained tremendous attention for functional applications in many fields, especially in photocatalysis. In this review, we summarize the different methods for the synthesis of COFs, such as solvothermal synthesis, microwave synthesis, ionothermal synthesis, room temperature solution synthesis, mechanochemical synthesis and interfacial synthesis firstly. Then, the structural features of COFs including diversity, tailorability, stability and porosity are provided. Afterwards, the fundamentals and advantages of COFs for photocatalysis are briefly introduced. Following this, the photocatalytic applications of COF-based materials toward H2 production, CO2 reduction, organic transformation and pollution degradation are discussed. Meanwhile, a series of strategies are highlighted to improve photocatalytic performance for the understanding of the structure-property relationship in this part. Finally, the remaining challenges and prospects on further development of efficient COF-based photocatalysts are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.