Abstract

Despite unique and useful properties of multi-walled carbon nanotubes (MWNTs) such as high strength and a low synthesis cost, their weak antimicrobial property hampers their use as an antimicrobial material. Herein, we demonstrate that the immobilization of nisin, a natural and inexpensive antimicrobial peptide, with poly(ethylene glycol) (PEG(1000)) as a linker significantly enhanced the antimicrobial and anti-biofilm properties of MWNTs. The MWNT-nisin composite showed up to 7-fold higher antimicrobial property than pristine MWNTs against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. Moreover, the MWNT-nisin composite had a dramatically improved capability to prevent biofilm formation both on a deposited film and in suspension. In particular, the MWNT-nisin deposit film exhibited a 100-fold higher anti-biofilm property than the MWNT deposit film. Further, it has been shown that PEG and nisin are covalently attached to MWNTs with excellent stability against leaching. We envision that our novel MWNT-nisin composite can serve as an effective and economical antimicrobial material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.