Abstract
Here, we demonstrate a fibroblast-derived extracellular matrix (FDM) immobilized cobalt-chromium (Co–Cr) alloy surface to accelerate re-endothelialization. The surface characterization results showed that FDM molecules with their protein components such as collagen I, fibronectin, and laminin, were covalently grafted to Co–Cr surface. The in vitro cells experiments exhibited the superiority of the FDM-immobilized surface to capture and proliferate of endothelial progenitor and human umbilical cord vein endothelial cells than control Co–Cr alloy. These results suggested that the immobilization of FDM on the stent surface by this facile procedure could be an efficient and promising strategy to get expeditious re-endothelialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.