Abstract

Nanopolystyrene was used as a solid support for the covalent immobilization of Candida antarctica lipase B (CalB) using the photoreactive reagent 1-fluoro-2-nitro-4-azido benzene (FNAB) as a coupling reagent. The obtained derivative was then used as a biocatalyst in a microwave assisted esterification experiment. Factors such as contact time, pH, and enzyme concentration were investigated during immobilization. The hydrolytic activity, thermal, and operational stability of immobilized-CalB were determined. The maximum immobilized yield (218 µg/mg support) obtained at pH 6.8 exhibited optimum hydrolytic activity (4.42 × 103 mU p-nitrophenol/min). The thermal stability of CalB improved significantly when it was immobilized at pH 10, however, the immobilized yield was very low (93.6 µg/mg support). The immobilized-CalB prepared at pH 6.8 and pH 10 retained 50% of its initial activity after incubation periods of 14 and 16 h, respectively, at 60 °C. The operational stability was investigated for the microwave assisted esterification of oleic acid with methanol. Immobilized-CalB retained 50% of its initial activity after 15 batch cycles in the microwave-assisted esterification. The esterification time was notably reduced under microwave irradiation. The combined use of a biocatalyst and microwave heating is thus an alternative total green synthesis process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.