Abstract

The covalent grafting of biological molecules to copolymers of maleic anhydride and methyl vinyl ether (MAMVE) has been used in various applications in diagnostics. To tentatively elucidate the phenomena involved in the control of the immobilization of oligodeoxynucleotides and proteins, the physico-chemical properties of MAMVE copolymers were investigated. Because the grafting mixture contains water, to allow dissolution of the biomolecules without loss of biological properties, the anhydride-based copolymer evolves from a neutral to a negatively charged macromolecule due to hydrolysis of the anhydride moities. The properties of both hydrolyzed and nonhydrolyzed polymers were investigated. As demonstrated by light-scattering measurements in batch, the copolymers showed some level of aggregation in DMF, DMSO, and aqueous DMSO. The presence of aggregates was confirmed by size-exclusion chromatography in DMF. However, partial deaggregation occurred for the lowest molecular weight sample, on adding 1% w/v of LiBr. The nonhydrolyzed copolymers exhibited a rigid conformation in a 5% water/DMSO mixture, as well as their hydrolyzed counterpart at a low ionization degree. The rate of the hydrolysis reaction was shown to be dependent on the pH of the reaction medium and on temperature. The activation energy of the hydrolysis reaction was 14 kJ/mol, and the rate constant in the order of 10 -4 s -1 . On the basis of these data, the effect on the grafting reaction of biomolecules of different parameters such as ionic strength and the nature of the solvent, along with some other results were interpreted in terms of interactions between the synthetic and bioactive macromolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.