Abstract

Phenylacetic acid (PAA) represents a substructure of a class of nonsteroidal anti-inflammatory carboxylic acid-containing drugs capable of undergoing metabolic activation in the liver to acylcoenzyme A (CoA)- and/or acyl glucuronide-linked metabolites that are proposed to be associated with the formation of immunogenic, and hence potentially hepatotoxic, drug-protein adducts. Herein, we investigated the ability of PAA to undergo phenylacetyl-S-acyl-CoA thioester (PA-CoA)-mediated covalent binding to protein in incubations with freshly isolated rat hepatocytes in suspension. Thus, when hepatocytes were incubated with phenylacetic acid carboxy-(14)C (100 microM) and analyzed for PA-CoA formation and covalent binding of PAA to protein and over a 3-h time period, both PA-CoA formation and covalent binding to protein increased rapidly, reaching 1.3 microM and 291 pmol equivalents/mg protein after 4 and 6 min of incubation, respectively. However, the covalent binding of PAA to protein was reversible and decreased by 72% at the 3-h time point. After 3 h of incubation, PAA was shown to be metabolized primarily to phenylacetyl-glycine amide (84%). No PAA-acyl glucuronide was detected in the incubation extracts. PA-CoA reacted readily with glutathione in buffer, forming PA-S-acyl-glutathione; however, this glutathione conjugate was not detected in hepatocyte incubation extracts. Coincubation of hepatocytes with lauric acid led to a marked inhibition of PA-CoA formation and a corresponding inhibition of covalent binding to protein. SDS-polyacrylamide gel electrophoresis analysis showed the formation of two protein adducts having molecular masses of approximately 29 and approximately 33 kDa. In summary, PA-CoA formation in rat hepatocytes leads to the highly selective, but reversible, covalent binding to hepatocyte proteins, but not to the transacylation of glutathione.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.