Abstract

Compacted bentonite is the main candidate for buffer material in several plans for spent nuclear fuel repositories. One of its important properties is high swelling capacity, which is caused by interaction between water molecules and exchangeable cations. This interaction makes bentonite behave differently from capillary materials. In this article, a model for thermo-hydro-mechanical state of partially water saturated bentonite is presented. It couples the water retention and swelling properties with introduction of the swelling factor in effective strain. The Helmholz energy density determines the state with a relatively small set of independent parameters: swelling pressure, swelling factor, maximum confined water content and the reference state. The model parameters are determined from experimental data for FEBEX bentonite, and as a simple consistency check, confined suction curves are calculated and compared to test results. Consistency of the model with observations on nano- and microscale of bentonite is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.