Abstract

The surface-enhanced Raman scattering (SERS) effect and sensor and biosensor analyses are widely applied to investigate drug-biomolecule interactions or to detect trace amount of analytes. In this work, surface-enhanced resonance Raman scattering (SERRS) and an electronic tongue system using impedance spectroscopy were brought together, combining sensitivity and structural level information. Taking advantage of the use of layer-by-layer (LbL) films of phospholipids as biological membrane mimetic systems, cardiolipin (CLP) and dipalmitoyl phosphatidyl glycerol (DPPG) were applied as transducers onto Pt interdigitated electrodes forming an array of sensing units. This e-tongue system was able to detect the phenothiazine methylene blue (MB) below nanomolar concentrations. SERRS was applied to investigate the MB molecular arrangement (monomers or aggregates) when in contact with the phospholipids at trace levels of concentration. The key point was the adsorption of Ag nanoparticles (AgNPs) within the phospholipid LbL films. This approach did not compromise the e-tongue performance and allowed the recording of in situ SERRS spectra for the LbL films after immersion into MB aqueous solutions. The detection of MB through SERRS gave similar results to those reported in the literature but now with an unprecedented sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.