Abstract

The refining and petrochemical industries generally own process plants and utility systems. Process plants are configured to finish the transformation and separation of materials, and utility systems supply the energy requirements for the process plants. Therefore, integrating two of them is more favorable than optimizing them individually. A coupling mixed integer nonlinear programming model is presented in this work to integrate process plants and utility systems; the objective is to minimize the energy costs to meet the requirements of the process operations and to maintain a steam balance in the total site. The mathematical model includes three parts: the heat integration of the process plants, the optimization of the utility system, and the coupling equations for the site-scale steam integration. The heat integration of the process plant is formulated on the basis of pinch analysis involving heat loads of the process heaters and steam generation and requirements. An optimization of the utility system...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.