Abstract
AbstractThe pressure field in thin fluid films can quite precisely be calculated by Reynolds fluid‐film equation. In some problems, it may be useful to couple thin fluid‐films with general 2D or 3D fluid flows. In the current work, we analyze the fluid flow, pressure and temperature field in a hydrodynamic journal bearing with a rectangular oil groove. Pressure and temperature in the fluid gap are calculated by means of the Reynolds equation and the 2D energy equation. Cavitation effects are taken into account by incorporating a 2‐phase cavitation approach. In order to calculate the velocity and pressure field in the oil groove, the 2D Navier‐Stokes equations are used; the temperature distribution in the oil groove is computed by means of the 2D energy equation. Appropriate coupling conditions for velocity, pressure and temperature are formulated in order to couple the flow in the fluid gap with the flow in the oil groove. Thermal expansion of journal shaft and bearing housing are also taken into account, since the bearing clearance changes with increasing temperature. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.