Abstract

Hemoglobin Saint Mandé (beta N102Y) is a low-affinity mutant with the substitution site situated in the quaternary-sensitive alpha 1 beta 2 interface. In adult hemoglobin the Asn102 beta contributes to the stability of the liganded (R) state, forming a hydrogen bond with Asp94 alpha. The quaternary and tertiary perturbations subsequent to the Tyr for Asn substitution in monocarboxylated hemoglobin Saint Mandé have been investigated by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Analysis of the one-dimensional NMR spectra of the liganded and unliganded samples in 1H2O provides evidence that both R and T quaternary structures of Hb Saint Mandé are different from the corresponding ones in HbA. In the monocarboxylated form of the mutant hemoglobin, at acid pH, we have observed the disappearance of an R-type hydrogen bond and the appearance of a new one whose proton resonates like a deoxy T marker. Using two-dimensional NMR methods and on the basis of previous results on the monocarboxylated HbA, we have obtained a significant number of resonance assignments in the spectra of monocarboxylated Hb Saint Mandé at pH 5.6 in the presence or absence of a strong allosteric effector, inositol hexaphosphate. This enabled us to characterize the tertiary conformational changes (relative to the liganded normal hemoglobin) triggered by the quaternary-state modification. The observed structural variations are confined within the heme pocket regions but concern both the alpha and beta subunits. Most of them, localized in the C, F, G, and FG segments, could result directly from the side-chain substitution, while others, such as Leu141 beta, could be explained only by long-range interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.