Abstract
Abstract This article discusses the well-posedness and error analysis of the coupling of finite and boundary elements for interface problems in nonlinear elasticity. It concerns 𝑝-Laplacian-type Hencky materials with an unbounded stress-strain relation, as they arise in the modelling of ice sheets, non-Newtonian fluids or porous media. We propose a functional analytic framework for the numerical analysis and obtain a priori and a posteriori error estimates for Galerkin approximations to the resulting boundary/domain variational inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.