Abstract

Often planners and engineers are faced with various options and questions in storm drainage network design e.g. flow pattern, direction, runoff quantity and therefore size of drain, or scenario after a road, airfield or building has been constructed. In most instances planning without drainage in mind has caused failure or extensive damage to property including the storm water drains which channel the water away. With the advent of various modelling and geographic information systems (GIS) tools this problem can be averted. The University of Zimbabwe’s (UZ) main campus had its storm drainage network reconstructed at a cost of about US$100000, because of persistent flooding. This paper describes a method of assessing the effectiveness of storm drainage networks by combining a digital elevation model (DEM) with a rainfall-runoff model based on the Soil Conservation Service South African manual (SCS-SA). The UZ campus was used as the test site. The DEM was generated from aerial photographs and the data imported into ArcView. The 3.0 km2 basin was then delineated into sub-catchments using ArcView Hydro extension tools. The land-use, watershed and soil map of the UZ were merged in ArcView and initial curve numbers (CN) assigned. Using three years of daily rainfall data, runoff and peak flows were calculated for each sub-catchment. By overlaying the natural flow lines derived from the DEM with the reconstructed physical drains a comparison of the flow direction and the orientation of the drains was achieved. Peak flows where calculated for each delineated watershed and the results used to check the adequacy of the trapezoidal concrete lined drains. A combination of a DEM and rainfall-runoff model within a GIS platform proves to be useful in estimating runoff on partly urbanised watersheds and in determining the size and orientation of storm drains. It is particularly useful for new areas where development is being contemplated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.