Abstract

The coupling interaction between nonlinear solitary waves in one-dimensional granular chains and damaged composite material plates is considered. Based on Hertz contact law and meso-mechanical model of stiffness reduction of composite material plates when the fiber breakage is the main damage mode, the coupled differential equations of particle chains and damaged composite material plates are derived. By solving the differential equations with Runge–Kutta method to get the velocity and displacement curves of particles and analyzing the delays and amplitude ratios of reflected waves, it is found that the damage quantity, fiber volume fraction, and thickness of damaged composite material plates as well as gravity have an effect on solitary waves. The preliminary research results provide a theoretical basis for nondestructive testing of damaged composite material plates by using solitary waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.