Abstract

An inverse method for determining the in-plane effective thermal conductivity of porous thermoplastics was implemented by coupling infrared thermography experiments and numerical simulation of heat transfer in straight fins having temperature-dependent convective heat transfer coefficient. The microstructure heterogeneity of extruded polyethylene foam, in which pores are filled with air with different levels of open and closed porosity, was taken into account. The obtained effective thermal conductivity values were compared with previous results obtained using a numerical solution based on periodic homogenization techniques (NSHT) and the transient plane source technique (TPS) to verify the accuracy of the proposed method. The results show that the suggested method is in good agreement with both NSHT and TPS. Moreover, it is also appropriate for structural materials such as unidirectional fiber-reinforced plastic composites, where heat transfer is very different according to the fiber direction (parallel or transverse to the fibers).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.