Abstract

This paper reports on the interaction between fluidelastic instability (FEI) and acoustic resonance. In order to examine the interaction, the duct acoustics were excited with speakers placed adjacent to the tube array to artificially replicate flow-induced acoustic resonance. While the current study has clearly captured the phenomenon of interaction between the fluidelastic motion at ∼ 10 Hz and the acoustic field at ∼ 1kHz, it is not apparent what the physical mechanism at work might be. The paper details the effect on RMS level of tube vibration for three independent parameters: flow velocity, structural damping and acoustic power. The results presented show that there is a corresponding fall in the FEI vibration amplitude with increasing sound pressure level in the tube array. In addition, the effects of flow velocity and structural damping in conjunction with forced acoustics on the RMS of tube displacement are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.