Abstract

We show that the spin-and-space unrestricted Hartree-Fock method, in conjunction with the companion step of the restoration of spin and space symmetries via Projection Techniques (when such symmetries are broken), is able to describe the full range of couplings in two-dimensional double quantum dots, from the strong-coupling regime exhibiting delocalized molecular orbitals to the weak-coupling and dissociation regimes associated with a Generalized Valence Bond combination of atomic-type orbitals localized on the individual dots. The weak-coupling regime is always accompanied by an antiferromagnetic ordering of the spins of the individual dots. The cases of dihydrogen (H$_2$, $2e$) and dilithium (Li$_2$, $6e$) quantum dot molecules are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.