Abstract
We present a biorthogonal formulation of coupled-cluster (CC) theory using a redundant projected atomic orbital (PAO) basis. The biorthogonal formulation provides simple equations, where the projectors involved in the definition of the PAO basis are absorbed in the integrals. Explicit expressions for the coupled-cluster singles and doubles equations are derived in the PAO basis. The PAO CC equations can be written in a form identical to the standard molecular orbital CC equations, only with integrals that are related to the atomic orbital integrals through different transformation matrices. The dependence of cluster amplitudes, integrals, and correlation energy contributions on the distance between the participating atomic centers and on the number of involved atomic centers is illustrated in numerical case studies. It is also discussed how the present reformulation of the CC equations opens new possibilities for reducing the number of involved parameters and thereby the computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.