Abstract

We use coupled optical and electronic simulations to investigate design trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite-difference frequency-domain electromagnetic solver is used to calculate the spontaneous emission enhancement factor and the extraction efficiency as a function of frequency and of position of the emitting source. The calculated enhancement factor is fed into an electronic simulator, which solves the coupled continuity equations for electrons and holes and Poisson’s equation. We simulate a two-dimensional structure consisting of a photonic-crystal slab with a single-defect cavity and investigate different electrical pumping geometries for such a cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.