Abstract

A coupled molecular dynamics (MD)-stochastic simulation based model has been proposed here for the thermal conductivity of ethylene glycol (EG) based copper nanofluid. The model is based on the thermal evolution of the nanoparticles dispersed in the nanofluid which is in contact with a heat source. It is natural that the nanoparticles dispersed in the nanofluid would move randomly by Brownian motion and repeatedly collide with the heat source. During each collision the nanoparticles would extract some heat by conduction mode from the heat source and this heat would be dissipated to the base fluid during Brownian motion by a combination of conduction and microconvection mode. Thus, in addition to normal conductive heat transfer through the base fluid (EG) itself (without nanoparticles) some amount of heat is transferred by the collision of the nanoparticles with the heat source. The extent of this additional heat transfer has been estimated in the present model to estimate the enhancement in thermal conductivity of EG based copper nanofluid, as a function of volume fraction loading of nanoparticles. The prediction of the present model has been compared with the experimental data available in literature, and it has shown a reasonable agreement between the theoretical prediction and the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.