Abstract

This paper proposes a coupled inductor-based hybrid dc circuit breaker topology with zero current switching for fast fault interruption in dc systems. A series resonant circuit comprising of the secondary winding of a two-winding coupled inductor and a charged capacitor (commutation capacitor) is switched on during fault to inject a counter-current pulse, and, consequently, force a zero crossing of fault current. Proposed solution facilitates arcless breaking for a mechanical circuit breaker due to zero current turn- off . The proposed circuit breaker exhibits fast fault response ( $\sim$ 30 $\mu$ s), and the response time is programmable based on the design of the coupled inductor and commutation capacitor. Furthermore, presented solution mitigates the requirement of energy-absorbing elements for demagnetizing the dc network following fault interruption, in contrast to conventional dc breakers. The paper also presents two modified circuit-breaker topologies to achieve unipolar voltage profile on the capacitor, which will enable the use of electrolytic capacitors for commutation so that the capacitor stack size is reduced in high-voltage applications. Detailed analysis and design equations are presented to explain the operation of the proposed topologies. Functionality of the proposed circuit breakers is verified through simulation, and experimental results are based on two laboratory prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.