Abstract

NH3-H2O falling film absorption usually takes place with low solution flow rate in real absorption refrigeration system. An experimental study of inner vertical absorption is carried out for the consideration of air-cooling absorber. Variable working conditions are tested to evaluate the heat and mass transfer performances. The traditional evaluation method based on log-mean-temperature (concentration) difference is criticized for its lack of theoretical basis while simultaneous heat and mass transfer process occurs. A new method proposed by Kim and Infante Ferreira is modified to evaluate the experimental results with reasonable assumptions. The method is based on the derivation of coupled heat and mass transfer differential equations of NH3-H2O absorption process. The analysis of the same experimental data shows that the new method realizes better consistency with smaller error, especially in heat transfer aspect. Heat and mass transfer performance is enhanced with the increase of solution Reynolds number. Sub-cooling of inlet weak solution also has positive influence on the absorption process, which should be evaluated by the new method correctly. Two correlations are developed to evaluate both Nusselt and Sherwood numbers for the design of air-cooling absorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.