Abstract

The coupled free vibration analysis of the thin-walled laminated composite I-beams with bisymmetric and monosymmetric cross sections considering shear effects is developed. The laminated composite beam takes into account the transverse shear and the restrained warping induced shear deformation based on the first-order shear deformation beam theory. The analytical technique is used to derive the constitutive equations and the equations of motion of the beam in a systematic manner considering all deformations and their mutual couplings. The explicit expressions for displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the dynamic stiffness matrix is determined using the force–displacement relationships. In addition, for comparison, a finite beam element with two-nodes and fourteen-degrees-of-freedom is presented to solve the equations of motion. The performance of the dynamic stiffness matrix developed by study is tested through the solutions of numerical examples and the obtained results are compared with results available in literature and the detailed three-dimensional analysis results using the shell elements of ABAQUS. The vibrational behavior and the effect of shear deformation are investigated with respect to the modulus ratios and the fiber angle change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.