Abstract

In this paper, the behavior of three parallel non-symmetric permeable cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through Fourier transform into three pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric displacement, the magnetic flux and the stress fields near the crack tips can be obtained. The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the lengths and spacing of cracks. It was also revealed that the crack shielding effect is present in piezoelectric/piezomagnetic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.