Abstract

Continuous time random walks (CTRWs) are used in physics to model anomalous diffusion, by incorporating a random waiting time between particle jumps. In finance, the particle jumps are log-returns and the waiting times measure delay between transactions. These two random variables (log-return and waiting time) are typically not independent. For these coupled CTRW models, we can now compute the limiting stochastic process (just like Brownian motion is the limit of a simple random walk), even in the case of heavy-tailed (power-law) price jumps and/or waiting times. The probability density functions for this limit process solve fractional partial differential equations. In some cases, these equations can be explicitly solved to yield descriptions of long-term price changes, based on a high-resolution model of individual trades that includes the statistical dependence between waiting times and the subsequent log-returns. In the heavy-tailed case, this involves operator stable space–time random vectors that generalize the familiar stable models. In this paper, we will review the fundamental theory and present two applications with tick-by-tick stock and futures data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.