Abstract

The use of computational techniques in the design of dry powder inhalers (DPI), as well as in unravelling the complex mechanisms of drug aerosolization, has increased significantly in recent years. Computational fluid dynamics (CFD) is used to study the air flow, inside the DPI, during the patient inspiratory act while discrete element methods (DEM) are used to simulate the dispersion and aerosolization of the drug product powder particles. In this work we discuss the possibility to validate a coupled CFD-DEM model for the NextHaler® DPI device against previously published experimental data. The approximations and assumptions made are deeply discussed. The comparison between computational and experimental results is detailed both for fluid and powder flows. Finally, the potential and possible applications of a calibrated DPI model are discussed as well as the missing elements necessary to achieve a fully quantitative predictive computational model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.