Abstract

One of the six selected concepts to be part of Generation IV nuclear reactors is the Supercritical Light Water Cooled Reactor. The High-Performance Light Water Reactor (HPLWR) is the European version and it is a very promising design. In recent years, interest in the study of thorium-based fuel cycles has been renewed and its possibilities for current LWRs have been evaluated. The use of thorium-based fuels will be fundamental in the future sustainability of nuclear energy, since in addition to its abundance in nature, thorium has an important group of advantages. In this paper, performance of thorium-based fuels in the typical fuel assembly of the HPLWR reactor is evaluated, using a computational model based on CFD and Monte Carlo codes for the neutronic/thermal-hydraulic coupled analysis. The volumetric power density profiles, coolant temperature profiles, fuel temperature profiles and others are compared with those obtained for standard UO 2 fuel. When the thorium-based fuels are used, the obtained infinite multiplication coefficients are smaller than the value obtained when UO 2 is used, since the 232 Th isotope has a lower contribution to the multiplicative properties of the medium than 238 U. As a result, a difference of approximately 12 000 pcm was observed. The results verified that the HPLWR is a thermal reactor with a hard spectrum. There are no notable changes in the neutron spectrum if the mass fraction of thorium is slightly varied. With coupled analysis, the potential benefits of the utilization of thorium-based fuels were verified. Moreover, a significant temperature decrease by 136 K on the center line of the fuel elements was observed. When the mass fraction of thorium increases in the oxides mixture, the weighted average temperature on the fuel elements decreases .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.