Abstract
In this paper, the squeeze-film lubrication theory between two isotropic porous rectangular plates has been advanced to analyse the effects of couple stresses arising due to the presence of microstructure additives in the lubricant, using the Stokes theory of couple-stress fluids. The most general form of the modified Reynolds equation is derived for the squeeze-film lubrication of the porous rectangular plates by taking into account of the velocity slip at the porous interface. An eigentype of expression is obtained for the squeeze-film pressure. The effects of the isotropic permeability, the couple stresses and the velocity slip parameters on the characteristics of the squeeze-film lubrication are discussed. A significant increase in the load-carrying capacity and the delayed squeeze-film time are observed for the couple-stress fluids in comparison with Newtonian fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.