Abstract

<abstract><p>Let $ G $ be a graph. A dissociation set of $ G $ is a subset of vertices that induces a subgraph with vertex degree at most 1. The dissociation polynomial of $ G $ is $ D_{G}(\lambda) = \sum_{D \in \mathcal{D}(G)} \lambda^{|D|} $, where $ \mathcal{D}(G) $ is the set of all dissociation sets of $ G $. In this paper, we prove that for any cubic graph $ G $ and any $ \lambda \in(0, 1] $, </p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \frac{1}{|V(G)|} \ln D_{G}(\lambda) \leq \frac{1}{4} \ln D_{K_4}(\lambda) $\end{document} </tex-math></disp-formula></p> <p>with equality if and only if $ G $ is a disjoint union of copies of the complete graph $ K_{4} $. When $ \lambda = 1 $, the value of $ D_G(\lambda) $ is exactly the number of dissociation sets of $ G $. Hence, for any cubic graph $ G $ on $ n $ vertices, $ |\mathcal{D}(G)|\leq|\mathcal{D}(K_4)|^{n/4} = 11^{n/4}. $</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.